Integrate scRNA-seq datasets#
!lamin load test-scrna
Show code cell output
π‘ found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
β
loaded instance: testuser1/test-scrna
import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
β
loaded instance: testuser1/test-scrna (lamindb 0.51.0)
ln.track()
π‘ notebook imports: anndata==0.9.2 lamindb==0.51.0 lnschema_bionty==0.30.0 pandas==1.5.3
β
saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-08-28 14:18:38, created_by_id='DzTjkKse')
β
saved: Run(id='XLtF43RASfz8MnvMWglS', run_at=2023-08-28 14:18:38, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')
Query files based on metadata#
# lookup objects for auto-complete
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing, # scRNA-seq
species=species.human, # human
cell_types__name__contains="monocyte", # monocyte
).distinct()
query.df()
storage_id | key | suffix | accessor | description | version | initial_version_id | size | hash | hash_type | transform_id | run_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
RAdyFo8MWTzVkqkFCK8T | ljWPEsjj | None | .h5ad | AnnData | 10x reference pbmc68k | None | None | 589484 | eKVXV5okt5YRYjySMTKGEw | md5 | Nv48yAceNSh8z8 | p3vdxLrlEIijgVQLdUd0 | 2023-08-28 14:18:31 | DzTjkKse |
WtEvWQ5KVML36kWeCyJt | ljWPEsjj | None | .h5ad | AnnData | Conde22 | None | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | p3vdxLrlEIijgVQLdUd0 | 2023-08-28 14:18:13 | DzTjkKse |
Intersect measured genes between two datasets#
# get file objects
file1, file2 = query.list()
file1.describe()
π‘ File(id='RAdyFo8MWTzVkqkFCK8T', key=None, suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', version=None, size=589484, hash='eKVXV5okt5YRYjySMTKGEw', hash_type='md5', created_at=2023-08-28 14:18:31, updated_at=2023-08-28 14:18:31)
Provenance:
ποΈ storage: Storage(id='ljWPEsjj', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 14:18:36, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 14:18:31, created_by_id='DzTjkKse')
π£ run: Run(id='p3vdxLrlEIijgVQLdUd0', run_at=2023-08-28 14:17:25, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 14:18:36)
Features:
var (X):
π index (695, bionty.Gene.id): ['asa6P3SWGqBF', 'sOu1hW4id709', 'mLZxpATriwGh', 'yo4j3UPxzM21', 'z4HRihQZPQ11'...]
external:
π assay (1, bionty.ExperimentalFactor): ['single-cell RNA sequencing']
π species (1, bionty.Species): ['human']
obs (metadata):
π cell_type (9, bionty.CellType): ['cytotoxic T cell', 'CD38-negative naive B cell', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'CD16-positive, CD56-dim natural killer cell, human', 'B cell, CD19-positive']
file1.view_lineage()
file2.describe()
π‘ File(id='WtEvWQ5KVML36kWeCyJt', key=None, suffix='.h5ad', accessor='AnnData', description='Conde22', version=None, size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', created_at=2023-08-28 14:18:13, updated_at=2023-08-28 14:18:13)
Provenance:
ποΈ storage: Storage(id='ljWPEsjj', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 14:18:36, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 14:18:31, created_by_id='DzTjkKse')
π£ run: Run(id='p3vdxLrlEIijgVQLdUd0', run_at=2023-08-28 14:17:25, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 14:18:36)
Features:
var (X):
π index (36503, bionty.Gene.id): ['hX0qP176evu9', 'XTNci8QqmQdO', 'dawqiy9gRXpa', 'sDa10RYPhTE4', '9dwaEdtkGoBj'...]
obs (metadata):
π cell_type (32, bionty.CellType): ['lymphocyte', 'mast cell', 'megakaryocyte', 'plasma cell', 'dendritic cell, human']
π assay (4, bionty.ExperimentalFactor): ["10x 5' v1", "10x 3' v3", "10x 5' v2", 'single-cell RNA sequencing']
π tissue (17, bionty.Tissue): ['spleen', 'skeletal muscle tissue', 'transverse colon', 'jejunal epithelium', 'lamina propria']
π donor (12, core.Label): ['621B', '582C', 'A36', 'D496', 'A31']
file2.view_lineage()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
π‘ adding file RAdyFo8MWTzVkqkFCK8T as input for run XLtF43RASfz8MnvMWglS, adding parent transform Nv48yAceNSh8z8
π‘ adding file WtEvWQ5KVML36kWeCyJt as input for run XLtF43RASfz8MnvMWglS, adding parent transform Nv48yAceNSh8z8
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
695
shared_genes.list("symbol")[:10]
['S1PR4',
'GLRX',
'NUDCD2',
'TMEM69',
'CD82',
'HP1BP3',
'HIGD2A',
'IL7R',
'GATA2',
'FLT3LG']
We also need to convert the ensembl_gene_id to symbol for file2 so that they can be concatenated:
mapper = pd.DataFrame(shared_genes.values_list("ensembl_gene_id", "symbol")).set_index(
0
)[1]
mapper.head()
0
ENSG00000125910 S1PR4
ENSG00000173221 GLRX
ENSG00000170584 NUDCD2
ENSG00000159596 TMEM69
ENSG00000085117 CD82
Name: 1, dtype: object
file2_adata.var.rename(index=mapper, inplace=True)
Intersect cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human',
'conventional dendritic cell']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subseted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs Γ n_vars = 126 Γ 695
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD16-positive, CD56-dim natural killer cell, human Conde22 114
conventional dendritic cell Conde22 7
CD16-positive, CD56-dim natural killer cell, human 10x reference pbmc68k 3
conventional dendritic cell 10x reference pbmc68k 2
dtype: int64
Show code cell content
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
π‘ deleting instance testuser1/test-scrna
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna