Jupyter Notebook

Bird’s eye view#

Background#

Data lineage tracks data’s journey, detailing its origins, transformations, and interactions to trace biological insights, verify experimental outcomes, meet regulatory standards, and increase the robustness of research. While tracking data lineage is easier when it is governed by deterministic pipelines, it becomes hard when its governed by interactive human-driven analyses.

Here, we’ll backtrace file transformations through notebooks, pipelines & app uploads in a research project based on Schmidt22 which conducted genome-wide CRISPR activation and interference screens in primary human T cells to identify gene networks controlling IL-2 and IFN-γ production.

Setup#

We need an instance:

!lamin init --storage ./mydata
Hide code cell output
💡 creating schemas: core==0.46.1 
✅ saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 14:21:03)
✅ saved: Storage(id='14knrNE6', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-08-28 14:21:03, created_by_id='DzTjkKse')
✅ loaded instance: testuser1/mydata
💡 did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
✅ loaded instance: testuser1/mydata (lamindb 0.51.0)

We simulate the raw data processing of Schmidt22 with toy data in a real world setting with multiple collaborators (here testuser1 and testuser2):

assert ln.setup.settings.user.handle == "testuser1"

bfx_run_output = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
ln.File(bfx_run_output.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(bfx_run_output.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
Hide code cell output
✅ saved: Transform(id='nnvoBKqmX1t2MY', name='Chromium 10x upload', type='pipeline', updated_at=2023-08-28 14:21:04, created_by_id='DzTjkKse')
✅ saved: Run(id='tTdod4HEQTSmbJrr9Bz6', run_at=2023-08-28 14:21:04, transform_id='nnvoBKqmX1t2MY', created_by_id='DzTjkKse')
💡 file in storage 'mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
💡 file in storage 'mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'

Track a bioinformatics pipeline#

When working with a pipeline, we’ll register it before running it.

This only happens once and could be done by anyone on your team.

ln.setup.login("testuser2")
✅ logged in with email testuser2@lamin.ai and id bKeW4T6E
❗ record with similar name exist! did you mean to load it?
id __ratio__
name
Test User1 DzTjkKse 90.0
✅ saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-08-28 14:21:05)
transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.User.filter().df()
handle email name updated_at
id
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-08-28 14:21:03
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-08-28 14:21:05
transform
Transform(id='XKMOyYO3PQgrD3', name='Cell Ranger', version='7.2.0', type='pipeline', created_by_id='bKeW4T6E')
ln.track(transform)
✅ saved: Transform(id='XKMOyYO3PQgrD3', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-08-28 14:21:05, created_by_id='bKeW4T6E')
✅ saved: Run(id='V2XJCq8Eh95X8GmvaU2A', run_at=2023-08-28 14:21:05, transform_id='XKMOyYO3PQgrD3', created_by_id='bKeW4T6E')

Now, let’s stage a few files from an instrument upload:

files = ln.File.filter(key__startswith="fastq/perturbseq").all()
filepaths = [file.stage() for file in files]
💡 adding file CBlOB54RhdJy9AW7uj0q as input for run V2XJCq8Eh95X8GmvaU2A, adding parent transform nnvoBKqmX1t2MY
💡 adding file 1PrHf91xBNVIdmEmnESf as input for run V2XJCq8Eh95X8GmvaU2A, adding parent transform nnvoBKqmX1t2MY

Assume we processed them and obtained 3 output files in a folder 'filtered_feature_bc_matrix':

output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
✅ created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/

Let’s look at the data lineage at this stage:

output_files[0].view_lineage()
https://d33wubrfki0l68.cloudfront.net/3a83efe8d0f15a4b2643e2b4f77d17a303f7e5e2/9bf47/_images/f2cd4c16a44ee7ca44723a77675d47cccdc174d2fc32e79534ad3d4928f5a839.svg

And let’s keep running the Cell Ranger pipeline in the background.

Hide code cell content
transform = ln.Transform(
    name="Preprocess Cell Ranger outputs", version="2.0", type="pipeline"
)
ln.track(transform)
[f.stage() for f in output_files]
filepath = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
file = ln.File(filepath, description="perturbseq counts")
file.save()
✅ saved: Transform(id='caxQSPA6QV3C6e', name='Preprocess Cell Ranger outputs', version='2.0', type='pipeline', updated_at=2023-08-28 14:21:05, created_by_id='bKeW4T6E')
✅ saved: Run(id='m4LHPEv874Tr5TQpSjXZ', run_at=2023-08-28 14:21:05, transform_id='caxQSPA6QV3C6e', created_by_id='bKeW4T6E')
💡 adding file Yl7zC34R1z8WfIfTFIKb as input for run m4LHPEv874Tr5TQpSjXZ, adding parent transform XKMOyYO3PQgrD3
💡 adding file roWLvO1NEaCqX2ExrbAr as input for run m4LHPEv874Tr5TQpSjXZ, adding parent transform XKMOyYO3PQgrD3
💡 adding file GIZ6lStUW8WPdbpxLlz0 as input for run m4LHPEv874Tr5TQpSjXZ, adding parent transform XKMOyYO3PQgrD3
💡 file in storage 'mydata' with key 'schmidt22_perturbseq.h5ad'
💡 data is AnnDataLike, consider using .from_anndata() to link var_names and obs.columns as features

Track app upload & analytics#

The hidden cell below simulates additional analytic steps including:

  • uploading phenotypic screen data

  • scRNA-seq analysis

  • analyses of the integrated datasets

Hide code cell content
# app upload
ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
filepath = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
file = ln.File(filepath, description="Raw data of schmidt22 crispra GWS")
file.save()

# upload and analyze the GWS data
ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
file_wgs = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
df = file_wgs.load().set_index("id")
hits_df = df[df["pos|fdr"] < 0.01].copy()
file_hits = ln.File(hits_df, description="hits from schmidt22 crispra GWS")
file_hits.save()
✅ logged in with email testuser1@lamin.ai and id DzTjkKse
✅ saved: Transform(id='bo9nh9PJkfNZ3E', name='Upload GWS CRISPRa result', type='app', updated_at=2023-08-28 14:21:07, created_by_id='DzTjkKse')
✅ saved: Run(id='QDDycyB2eCEcaW67vJ3y', run_at=2023-08-28 14:21:07, transform_id='bo9nh9PJkfNZ3E', created_by_id='DzTjkKse')
💡 file in storage 'mydata' with key 'schmidt22-crispra-gws-IFNG.csv'
✅ logged in with email testuser2@lamin.ai and id bKeW4T6E
✅ saved: Transform(id='nv8koAu7vWQ7yJ', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-08-28 14:21:10, created_by_id='bKeW4T6E')
✅ saved: Run(id='kdj1Slelm88rpqWQkS5G', run_at=2023-08-28 14:21:10, transform_id='nv8koAu7vWQ7yJ', created_by_id='bKeW4T6E')
💡 adding file 9R6ZwEcOz75YI3cubpzC as input for run kdj1Slelm88rpqWQkS5G, adding parent transform bo9nh9PJkfNZ3E
💡 file will be copied to default storage upon `save()` with key `None` ('.lamindb/Cdu0q9sp5SdM4Q2t4bUB.parquet')
💡 data is a dataframe, consider using .from_df() to link column names as features
✅ storing file 'Cdu0q9sp5SdM4Q2t4bUB' at '.lamindb/Cdu0q9sp5SdM4Q2t4bUB.parquet'

Let’s see what the data lineage of this looks:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_lineage()
https://d33wubrfki0l68.cloudfront.net/8eb77933d097ac4de53241dc96907119f0ccd21b/854a6/_images/8149039419aca80ebbd5b97fb5d2127db8d792dc4fe17f0cd4672b09693a10fe.svg

In the backgound, somebody integrated and analyzed the outputs of the app upload and the Cell Ranger pipeline:

Hide code cell content
# Let us add analytics on top of the cell ranger pipeline and the phenotypic screening
transform = ln.Transform(
    name="Perform single cell analysis, integrating with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
✅ saved: Transform(id='77xjp9OwkGGwth', name='Perform single cell analysis, integrating with CRISPRa screen', type='notebook', updated_at=2023-08-28 14:21:10, created_by_id='bKeW4T6E')
✅ saved: Run(id='slCK9KQI5DpR08oIcYvo', run_at=2023-08-28 14:21:10, transform_id='77xjp9OwkGGwth', created_by_id='bKeW4T6E')
💡 adding file ZCcX5DBKHm9DU2Ybemf2 as input for run slCK9KQI5DpR08oIcYvo, adding parent transform caxQSPA6QV3C6e
💡 adding file Cdu0q9sp5SdM4Q2t4bUB as input for run slCK9KQI5DpR08oIcYvo, adding parent transform nv8koAu7vWQ7yJ
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
💡 file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
✅ storing file 'waseTZpuKcgAyK5dqsiI' at 'figures/umap_fig1_score-wgs-hits.png'
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
💡 file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
✅ storing file '0g0vwXFUQi4tXsnDZBgG' at 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

The outcome of it are a few figures stored as image files. Let’s query one of them and look at the data lineage:

Track notebooks#

We’d now like to track the current Jupyter notebook to continue the work:

ln.track()
💡 notebook imports: ipython==8.14.0 lamindb==0.51.0 scanpy==1.9.4
✅ saved: Transform(id='1LCd8kco9lZUz8', name='Bird's eye view', short_name='birds-eye', version='0', type=notebook, updated_at=2023-08-28 14:21:12, created_by_id='bKeW4T6E')
✅ saved: Run(id='VwarMAJPHZtHdu1Ay7D9', run_at=2023-08-28 14:21:12, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')

Visualize data lineage#

Let’s load one of the plots:

file = ln.File.filter(key__contains="figures/matrixplot").one()

from IPython.display import Image, display

file.stage()
display(Image(filename=file.path))
💡 adding file 0g0vwXFUQi4tXsnDZBgG as input for run VwarMAJPHZtHdu1Ay7D9, adding parent transform 77xjp9OwkGGwth
https://d33wubrfki0l68.cloudfront.net/dcbd1e67232f2ede82171ba02237575cc586c2b7/1ceff/_images/45891ad4693b5bfeb52a48b2ab2e5d0a82220b9482360ee1a8757fad581fffdc.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_lineage()
https://d33wubrfki0l68.cloudfront.net/545590abd347246e5be604a8a81414577a4bc9ad/1b421/_images/4a703d8635924180bd705bd857b8c767e2148a3712690c16c821416764854ff4.svg

Alternatively, we can also purely look at the sequence of transforms and ignore the files:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name version initial_version_id type reference updated_at created_by_id
id
77xjp9OwkGGwth Perform single cell analysis, integrating with... None None None notebook None 2023-08-28 14:21:11 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/8b2c3a1f762fc38ceaa6461d419483a05cbb5426/1eb4a/_images/e5fff154f065dc8c5e4aafbf78a174ba829031c21473c688b16e12b247cde619.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
Cdu0q9sp5SdM4Q2t4bUB 14knrNE6 None .parquet DataFrame hits from schmidt22 crispra GWS None None 18368 O2Owo0_QlM9JBS2zAZD4Lw md5 nv8koAu7vWQ7yJ kdj1Slelm88rpqWQkS5G 2023-08-28 14:21:10 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='nnvoBKqmX1t2MY', name='Chromium 10x upload', type='pipeline', updated_at=2023-08-28 14:21:04, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 14:21:07)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name version initial_version_id type reference updated_at created_by_id
id
XKMOyYO3PQgrD3 Cell Ranger None 7.2.0 None pipeline None 2023-08-28 14:21:05 bKeW4T6E
caxQSPA6QV3C6e Preprocess Cell Ranger outputs None 2.0 None pipeline None 2023-08-28 14:21:06 bKeW4T6E
nv8koAu7vWQ7yJ GWS CRIPSRa analysis None None None notebook None 2023-08-28 14:21:10 bKeW4T6E
77xjp9OwkGGwth Perform single cell analysis, integrating with... None None None notebook None 2023-08-28 14:21:11 bKeW4T6E
1LCd8kco9lZUz8 Bird's eye view birds-eye 0 None notebook None 2023-08-28 14:21:12 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name version initial_version_id type reference updated_at created_by_id
id
nv8koAu7vWQ7yJ GWS CRIPSRa analysis None None None notebook None 2023-08-28 14:21:10 bKeW4T6E
77xjp9OwkGGwth Perform single cell analysis, integrating with... None None None notebook None 2023-08-28 14:21:11 bKeW4T6E
1LCd8kco9lZUz8 Bird's eye view birds-eye 0 None notebook None 2023-08-28 14:21:12 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
0g0vwXFUQi4tXsnDZBgG 14knrNE6 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 77xjp9OwkGGwth slCK9KQI5DpR08oIcYvo 2023-08-28 14:21:12 bKeW4T6E
waseTZpuKcgAyK5dqsiI 14knrNE6 figures/umap_fig1_score-wgs-hits.png .png None None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 77xjp9OwkGGwth slCK9KQI5DpR08oIcYvo 2023-08-28 14:21:11 bKeW4T6E
Cdu0q9sp5SdM4Q2t4bUB 14knrNE6 None .parquet DataFrame hits from schmidt22 crispra GWS None None 18368 O2Owo0_QlM9JBS2zAZD4Lw md5 nv8koAu7vWQ7yJ kdj1Slelm88rpqWQkS5G 2023-08-28 14:21:10 bKeW4T6E
9R6ZwEcOz75YI3cubpzC 14knrNE6 schmidt22-crispra-gws-IFNG.csv .csv None Raw data of schmidt22 crispra GWS None None 1729685 cUSH0oQ2w-WccO8_ViKRAQ md5 bo9nh9PJkfNZ3E QDDycyB2eCEcaW67vJ3y 2023-08-28 14:21:09 DzTjkKse
ZCcX5DBKHm9DU2Ybemf2 14knrNE6 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None None 20659936 la7EvqEUMDlug9-rpw-udA md5 caxQSPA6QV3C6e m4LHPEv874Tr5TQpSjXZ 2023-08-28 14:21:06 bKeW4T6E
Yl7zC34R1z8WfIfTFIKb 14knrNE6 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None None 6 G4l1tW72nOSg-q858lYARg md5 XKMOyYO3PQgrD3 V2XJCq8Eh95X8GmvaU2A 2023-08-28 14:21:05 bKeW4T6E
GIZ6lStUW8WPdbpxLlz0 14knrNE6 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None None 6 wn8u1-AVw1I-KHwzJiZ7-g md5 XKMOyYO3PQgrD3 V2XJCq8Eh95X8GmvaU2A 2023-08-28 14:21:05 bKeW4T6E
Run

transform_id run_at created_by_id reference reference_type
id
tTdod4HEQTSmbJrr9Bz6 nnvoBKqmX1t2MY 2023-08-28 14:21:04 DzTjkKse None None
V2XJCq8Eh95X8GmvaU2A XKMOyYO3PQgrD3 2023-08-28 14:21:05 bKeW4T6E None None
m4LHPEv874Tr5TQpSjXZ caxQSPA6QV3C6e 2023-08-28 14:21:05 bKeW4T6E None None
QDDycyB2eCEcaW67vJ3y bo9nh9PJkfNZ3E 2023-08-28 14:21:07 DzTjkKse None None
kdj1Slelm88rpqWQkS5G nv8koAu7vWQ7yJ 2023-08-28 14:21:10 bKeW4T6E None None
slCK9KQI5DpR08oIcYvo 77xjp9OwkGGwth 2023-08-28 14:21:10 bKeW4T6E None None
VwarMAJPHZtHdu1Ay7D9 1LCd8kco9lZUz8 2023-08-28 14:21:12 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
14knrNE6 /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-08-28 14:21:03 DzTjkKse
Transform

name short_name version initial_version_id type reference updated_at created_by_id
id
1LCd8kco9lZUz8 Bird's eye view birds-eye 0 None notebook None 2023-08-28 14:21:12 bKeW4T6E
77xjp9OwkGGwth Perform single cell analysis, integrating with... None None None notebook None 2023-08-28 14:21:11 bKeW4T6E
nv8koAu7vWQ7yJ GWS CRIPSRa analysis None None None notebook None 2023-08-28 14:21:10 bKeW4T6E
bo9nh9PJkfNZ3E Upload GWS CRISPRa result None None None app None 2023-08-28 14:21:09 DzTjkKse
caxQSPA6QV3C6e Preprocess Cell Ranger outputs None 2.0 None pipeline None 2023-08-28 14:21:06 bKeW4T6E
XKMOyYO3PQgrD3 Cell Ranger None 7.2.0 None pipeline None 2023-08-28 14:21:05 bKeW4T6E
nnvoBKqmX1t2MY Chromium 10x upload None None None pipeline None 2023-08-28 14:21:04 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-08-28 14:21:10
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-08-28 14:21:07
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai and id DzTjkKse
💡 deleting instance testuser1/mydata
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata